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Nowadays, the research on materials science is rapidly entering a phase of 
data-driven age. Machine learning, one of the most powerful data-driven 
methods, have been being applied to materials discovery and performances 
prediction with undoubtedly tremendous application foreground. Herein, 
the challenges and current progress of machine learning are summarized in 
materials science, the design strategies are classified and highlighted, and 
possible perspectives are proposed for the future development. It is hoped 
this review can provide important scientific guidance for innovating materials 
science and technology via machine learning in the future.
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statistical machine learning, such as deep 
learning,[9] reinforcement learning,[10] 
adversarial learning,[11] etc. which could 
double improve the research efficiency 
in the fields of information data mining, 
data classification, and new data predic-
tion. In present, AI based on this machine 
learning process has become the mostly 
important driving force for science and 
industrial revolution.

Material innovation always plays a great 
role in the process of industrial revolu-
tion and human social development.[12] 
For example, the advanced alloys, semi-

conductor materials, polymer materials, composite materials, 
superconducting materials and biocompatible materials have 
been promoting the technology revolution of new energy, 
microelectronics, bioengineering technology and space tech-
nology, which opened the door to the unprecedented infor-
mation society.[13,14] In the nearly future, the develop of novel 
material science and technology is accelerating to the intercon-
nected and intelligent direction, which will further promote the 
fourth industrial revolution – green intelligent industry.[15,16] 
In comparison with the traditional experiment- and computa-
tion-driven research methods for materials science, the data-
driven mode, which integrates high-throughput experiments, 
high-throughput computing and material data based on data 
mining and AI, would be more revolutionary in the future 
development.[17–20]

As one of the most essential AI methods, machine learning 
is becoming an excellent tool for material innovation due to its 
low computing cost, short development cycle, strong data anal-
ysis and prediction ability (Figure  1). Nowadays, the machine 
learning has been used and shown great potential in materials 
prediction for magnetocaloric effect,[21] bandgap,[22] dielec-
tric constant,[23] quantum chemistry,[24] thermal properties,[25] 
new materials design, and discovery.[26] Summing up the pre-
sent development of data-driven machine learning, it is still at 
primary stage in material innovation. As far as we know, few 
comprehensive review papers on machine learning and mate-
rial applications have attracted close attention in recent years, 
focusing on machine learning in chemical discovery, energy 
materials, solid-state materials science and so on.[17–20] Recently, 
there has been a sharp increase in the number of articles on 
machine learning and materials science, which suggests that 
the research direction and content have been widely extended. 
Thus, it is significantly important to update the summarize the 
prospective in this field. Herein, this review attempts to high-
light the main challenges of machine learning in materials 
science, focus on the research progress of existing strategies, 
and possible directions and perspective of machine learning in 

The ORCID identification number(s) for the author(s) of this article 
can be found under https://doi.org/10.1002/adfm.202108044.

1. Introduction

At present stage of human society, artificial intelligence (AI) 
technology is becoming a tendency of developing all over the 
world. Especially, the successful application in vision recogni-
tion,[1] speech recognition,[2] natural language understanding,[3] 
and man-machine game[4] also accelerates the integration of 
different knowledge and the cross of multi-disciplinary. For 
example, the so-called AlphaGo Zero achieved a score of 100:0 
in the game with the previous champion AlphaGo Lee in 2017;[5] 
A Nature Biotechnology paper published in 2019 reported six 
molecules based on a generative model, four of which have 
measurable biochemical activity;[6] One Nature cover article 
reported a tireless mobile robotic chemist in 2020, which was 
able to operate autonomously over eight days, performing 688 
experiments within a ten-variable experimental space, and 
finally selected a novel and efficient photocatalyst.[7]

Generally, the implementation process of AI would be 
divided into three stages: handwritten knowledge, statistical 
learning, and context adaptation,[8] which is currently in the 
statistical learning level. The key core technology depends on 
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materials innovation. Our main objective is to illustrate main 
strategies for machine learning in materials, provide possible 
directions for next-generation machine learning, and sug-
gest methodologies for the future development of materials 
sciences.

2. Challenges of Machine Learning in Materials 
Science
In the development process of materials science, the traditional 
methods slow down the pace of materials research because of 
the long research cycle, potential data information loss and 
low efficiency. The up-to-date machine learning expectations 
based on material data start from three components, including 
data, algorithms, and models. Firstly, the material data should 
be collected and obtained, then preprocess these data. For dif-
ferent material data, the operations, such as encoding conver-
sion, feature crossover, calculation optimization, filtering and 
deleting, may be performed, and the optimized data would be 
divided into training set and test set. After that, the appropriate 
algorithm model for machine learning would be selected and 
trained based on the training set. The test set is used for eval-
uating and adjusting the algorithm model to achieve the best 
evaluation. Finally, the optimized algorithm model would be 
effective for further data prediction to obtain the desired target. 
Therefore, combined with the machine learning technology, the 
efficiency of materials research could be significantly improved. 
For example, machine learning can give some guiding 
conditions in many fields for predicting crystal structure, 

understanding of thermal properties of amorphous solids, 
identification of high temperature thermal conductors, clas-
sification of crystal structure, magnetocaloric effect, etc.[27–54]  
As well as the promotion of the material Genome Project,[55] 
machine learning has been combined with density functional 
theory (DFT) calculation to establish a development model 
for material research, such as prediction of thermodynamic 
stability, bandgaps, AB2C2 compounds,[44,56–58] and graphene-
based bimetallic catalysts.[59,60] Furthermore, machine learning 
could even replace DFT to achieve the desired goals, including 
the prediction of crystal structure, adsorption energy on metal 
alloys and so on.[40,43,61] Besides, the failed experimental data 
about crystallization of templated vanadium selenite was also 
been used for information mining by machine learning.[62] 
Although the cross-research of materials science associated 
with machine learning has shown special advantages, there 
are still several challenges (Figure 2) which need to be properly 
address and deeply understood as shown below.

2.1. Insufficient Data

Data is not only the basic premise of the fourth paradigm of 
materials science, but also the first challenge to be solved in 
application of materials.[63] Unlike most disciplines, materials 
science and technology owns many different data categories. 
More severely, the data output of each category is less, and the 
feature dimension is lower. For example, even a simple experi-
mental data always depends on different controllable factors, 
such as raw materials, contents, temperatures, times, humidity, 

Figure 1.  The introduction of AI and machine learning in materials science.
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etc. In most studies, the research data are obtained via limited 
experimental conditions, which takes a long time in the mean-
time. Thus, these measured results are just a small sampling, 
which also lacks comparability in different published studies. 
It could be concluded that sufficient data can not be obtained 
quickly to meet the operation of machine learning, which limit 
their further development in materials science.

2.2. Difficult to Identify, Classify, and Correlate the Features

In the process of material research, the key point is to explore 
the relationship among the four elements of materials, 
which could be controlled by the features of experimental 
parameters.[64–66] The quantity, quality, form, and relationship 
of these features are essential for machine learning. In general, 
the initial data features can not fit the ideal service conditions 
for machine learning, thus the feature engineering operations, 
such as adding, deleting, and modifying, are necessary. Herein, 
four challenges related to features are shown as below:

1)	 Processing difficulties because of the large number of fea-
tures. With the promotion of high-throughput computing[67] 
and Materials Genome Initiative (MGI),[68] the number of 
features, as well as the noise and redundancy of the origi-
nal data, continue to increase. Finally, the computational and 
storage became more and more complex, so that the tradi-
tional learning methods are no longer suitable to gain satis-
factory results.

2)	 Challenges to explore the relationship among various fea-
tures. It is mentioned before that researcher can get many 
data with a variety of features via experiments. When study-
ing the performances, the control variable method is used to 
explore the optimized parameters. However, it is complicated 
to establish the relationship in multiple features.

3)	 Difficulty in feature classification. Since the relationship 
among the features remains unclear, their influences on 
materials science should be systematically discussed. When 
combining with the machine learning technology, it is still 
difficult to scientifically clarify these features as needed.

4)	 Difficulty in feature recognition. The initially collected data 
often cannot be directly identified for machine learning. 
Many modifying strategies are needed to convert them into 
data features to be well recognized. However, each conver-
sion is different, which also makes the feature recognition 
become a huge limitation of data-driven development in ma-
terials science.

2.3. The Specific Algorithm with Poor Universality

Machine learning shows different abilities based on various 
algorithms, for example, different results would be obtained by 
the same algorithm to deal with different objects or different 
algorithms to deal with the same object. In materials science, 
the machine learning algorithms needs to be especially con-
sidered in different directions because of the rich research 
fields, great differences, and small relevance. Moreover, the 
performance optimization, structure regulation, and some other 
directions also should be considered during the new materials 
development, so that the selection and optimization of algo-
rithms is an issue of concern. In the field of materials science, 
the relationship and interaction mechanism between the four 
elements “component-structure-performance-application” usu-
ally needs to be explored firstly, which could provide theoretical 
support for the materials research.[69–71] However, that raised 
much higher challenges to the targeted selection and optimi-
zation of machine learning algorithms. Therefore, different 
objects and different situations demand different algorithms 
without universality.

Figure 2.  Summary of challenges for the machine learning in materials science.
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2.4. The Abstract Model with Poor Interpretability

The deep neural network, which belongs to the representative 
machine learning model, has developed rapidly and shown pow-
erful ability in intelligent products. For example: self-driving 
cars,[72] image recognition,[73] dialogue systems.[74] However, the 
internal working mechanism is complicated to understand the 
decision-making model in human inborn thought processes. 
In the field of materials science, machine learning is always 
regard as a “black box” and the principles behind data-driven 
are ignored in most studies. For strict research for materials, 
the prediction of properties might not be well trusted in this 
situation. Thus, in addition to final decision, both the knowl-
edge that learns from the data and the features that attributes 
most to the results should be presented in detail. Therefore, the 
interpretability of the machine learning model is also the focus 
of attention in AI for materials science.

2.5. The Highly Specialized Research in Materials Science

With the trend of AI technology, many researchers begin to 
combine the materials science with machine learning intelli-
gent technology, relying on the data-driven strategy to predict 
and analyze material properties.[75–77] As known to all, the code 
programs should be firstly designed to achieve the goals for 
machine learning, which includes both the feature engineering 
and model building after data collection. Many programming 
languages can be used for machine learning, such as the most 
popular one “python” with simple but rich expansion package. 
However, due to the lack of deep mathematical theory and pro-
gramming ability for researchers in materials science, the pro-
gress of machine learning in materials still going slowly.

3. Strategies for Machine Learning Applied  
in Materials Science
3.1. Increasing the Amount of Data

Since the foundation in 2011, the Materials Genome Initiative 
(MGI) continually accelerates the pace of material discovery, 
design and deployment by training to collaborate experi-
ment, theory and computing for data generation, analysis 
and sharing.[78] Zhang et  al. combined the MGI strategy with 
high-throughput measurement and CALPHAD software to 
accelerate the development and design of new biological tita-
nium alloys.[79] MGI strategy is used to enhance the mining of 
insensitive high energy density materials by Zhang et al.[80] The 
authors discussed how a materials genome approach could be 
used to accelerate the discovery of promising insensitive high 
explosive (IHE) molecules. By rationalizing the relationship 
between structure and properties, the “genetic” features are 
firstly identified and extracted. Then, the computation-guided 
molecular designing and rapid screening are carried out, 
which includes library construction of molecular fragments  
and structural selection of candidate molecules based on 
filter conditions of “genetic” features. Finally, the ideal target  
molecule, 2,4,6-triamino-5-nitropyrimidine-1,3-dioxide, is obtained  

and successfully synthesized, which exhibits a high measured 
density, high thermal decomposition temperature, high deto-
nation velocity, and extremely low sensitivities. While Pablo 
and the co-workers put forward the application of information 
materials, functional materials, energy and catalytic materials 
according to MGI in ref. [68]. Through the MIG strategy, both 
the data generation and the ability to identify material attrib-
utes are strengthened in cooperation with machine learning. 
Besides, several strategies, including high-throughput cal-
culation,[67] DFT calculation[81] and traditional experimental 
data accumulation in published papers,[27] also provide a large 
number of valuable data for machine learning in materials 
science. High-throughput and DFT calculation can provide 
abundant data without the cost of human resources in experi-
ment, so that more theoretical data could be directly produced 
in a limited time.[57,82] At the same time, there are many open 
high-throughput material databases nowadays, such as the 
open quantum material database,[83] open inorganic material 
database,[84] crystallographic open database,[85] thermoelectric 
open data resource,[86] two-dimensional material database,[87] 
novel material discovery database,[88] high-throughput com-
bination database of electronic band structure for inorganic 
scintillator materials,[89] inorganic amorphous database,[90] and 
so on. All these open databases could provide much more con-
veniences for researchers in machine learning. Moreover, Dong 
et  al. develop a deep neural network (DNN) to predict mate-
rial defects based on small data, which also achieve very good 
results.[91] By above strategies, the open-source of database for 
materials science has gradually increased for machine learning 
in recent years, as well as the types of databases. This could 
provide more choices for machine learning research in mate-
rials and promote more researchers in different fields to partici-
pate. However, the collection efficiency for databases still needs 
to be further improved, and more strategies should be devel-
oped. Meanwhile, optimizing the algorithm model for large 
sample data to promote the improvement of machine learning 
capabilities and making more breakthroughs for small sample 
data to adapt machine learning are still the main challenges.

3.2. Dealing with the Perplexity of Research in Features 
by Machine Learning

As shown in Figure  3, the way to deal with the perplexity in 
features could be concluded in feature selection and dimen-
sionality reduction with a subsequent machine learning. In 
addition, the feature contact information mining, classification, 
and reconstruction based on machine learning are also sum-
marized herein.

3.2.1. Strengthening the Analysis and Optimization on Features

The methods by selecting and transforming multi-dimensional 
features into low-dimensional features have been proposed to 
improve the quality of features, reduce computational com-
plexity, and improve recognition accuracy.[92–98] In present 
machine learning feature engineering, these two powerful tech-
nologies have shown great potential in various applications, 
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such as the text data,[99] planetary system metrics,[100] clinical 
medicine,[101] human hand motion classification,[102] human 
activity recognition,[103] etc. In materials science, the trans-
formation in various features is also important, which might 
directly affect the analytical accuracy in structure and proper-
ties. The familiar machine learning algorithms, e.g. support 
vector machine and clustering,[104,105] have exhibited some solu-
tions for feature selection. For example, Brgoch et  al. selects 
and classifies the features of structure and polymorphism of 
equiatomic ternary ABC phase based on these two methods.[105] 
In predicting the performances of zeolites, Evans’s group con-
structs a machine learning method to automatically predict 
the mechanical properties without any calculation of chemical 
properties, just based on their local geometry, structure, and 
porosity features.[106] According to the exceptional insight into 
the mechanics of zeolitic frameworks, the development of this 
model has highlighted the correlations between characteristic 
features and elastic properties, which is further trained with 
a DFT data set. This methodology is employed to predict the 
elastic response of 590 448 hypothetical zeolites, which are 
more accurate than those calculated by the force field method. 
Besides, some methods can not only find the minimum of 
the surface free energy, but also screen out the special struc-
ture to obtain these properties, develop novel feature classifica-
tion methods, and propose complete structure descriptors,[107] 
which could overcome the problems that can not be realized 
by common descriptors. Choudhary et al have proved that the 

combination of paired radial, nearest neighbor, bond angle, 
dihedral angle and core charge distribution plays a vital role in 
predicting formation energy, bandgap, static refractive index, 
and magnetic properties via this similar method.[108] In mate-
rial research, the irrelevant and redundant features are also 
eliminated by feature selection in most cases, to improve the 
accuracy of the model and reduce the running time. Mean-
while, the real relevant feature simplification model could be 
selected to help understanding the process of data generation. 
In the publication reported by Adibi, the dimensionality reduc-
tion technique has been used to reduce the dimension of the 
response space while keep the number of identical points in 
the response space for electromagnetic nanostructures design 
and optimization.[109] Thus the dimension of these features are 
reduced based on the correlation between them, which could 
reduce the computational complexity and avoid more mistakes.

3.2.2. Exploring the Relationship among Features

In present research of machine learning in materials science, 
the built-in methods are often used to explore the relationship 
among different features. Artrith and co-workers automati-
cally construct atomic interaction potentials by a Behler-Par-
rinello approach, which is based on artificial neural networks 
(ANNs).[110] They try to establish a free and open-source atomic 
energy network package for modeling electrocatalytic CuAu and 

Figure 3.  The strategies to deal with perplexity of research in features.
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Cu-doped ceria nanoparticles in water. Taking the well-studied 
TiO2 as the example, the construction of realistic structure 
models is optimized in consideration of defected crystals and 
nano structures for catalytic activity. Thus, the lattice parame-
ters, energies, and bulk moduli are accurately predicted by TiO2 
ANN potential. The researchers also propose a generalized 
crystal graph convolution neural network framework to present 
the periodic crystal system at the example of perovskite.[42] By 
predicting the properties according to the relationship between 
atoms in crystal, a theoretically optimal crystal material could 
be obtained. The neural network potential and Gaussian 
approximate potential have also been used to simulate the 
interatomic potential.[29] After unifying the different parameter 
factors into a free energy by the graph neural network model, 
the relationship between the features could be automatically 
linked together associating with the information mining pro-
cess, which finally help to predict performances.[111] Further-
more, machine learning has also shown significant value in 
constructing the correlation between physical features in phase 
change material system.[112]

3.2.3. Classifying Features into Different Categories

Machine learning has also been used for data classification to 
provide more convenience and improve the learning efficiency. 
In ref. [31], Sohn et al. reported a deep machine learning tech-
nique based on convolution neural network, which was used 
to classify powder X-ray diffraction (XRD) patterns according to 
crystal system, extinction group, and spatial group. The XRD 
data are gained from the inorganic crystal structure database. 
Meanwhile, convolution neural network is also used to classify 
the crystal structure automatically by Ziletti et al.[32] The crystal 
structures are firstly transformed into diffraction patterns, then 
small amounts of data are extracted as the training set to gen-
erate a final classification model. Besides, visualization is also 
developed in the neural network’s internal operation to ensure 
the classification decision. Finally, through the deployment of 
crystal structure classification model, the highly efficient clas-
sification is realized without any additional model optimiza-
tion. These studies would pave the way to optimize the noise 
and incomplete three-dimensional structure data for machine 
learning in materials science.

3.2.4. Recognizing the Attributes of Material Features

Because of the particularity of material data and features, the 
data was always encoded and transformed to be easily identi-
fied by machine learning.[34,113] For example, Dimiduk et  al. 
simplified the material topics into digital fingerprint vectors, 
and then developed appropriate measure of chemical (dis)simi-
larity or chemical distance in the learning scheme to map the 
features’ distance.[114] The principle is to encode and map the 
attributes to form the basis of further operation. Besides, Chen 
and co-workers also propose a training-saving method based 
on transfer learning, combining the encoder-decoder process 
via deep convolution network and feature matching optimi-
zation.[115] This method mainly aims at the microstructure of 

a single given target, which firstly encodes the initial micro-
structure, and then pre-train through the convolution neural 
network to further obtain the optimized microstructure. After 
unsupervised learning, the required reconstructed microstruc-
ture is finally obtained.

Looking at the above strategies at this stage, various feature 
engineering methods are usually used to deal with the fea-
ture challenges. Automatic selection of features based on deep 
learning and automatic coding could make the feature pro-
cessing much easier. However, these are still in the static space 
stage, and the relationship among the material phase, composi-
tion, morphology, and performances still cannot be well studied 
in parallel at the same time. Due to the particularity, variability, 
polymorphism, and uncertain factors of materials science, 
more attention should be paid to obtain the real relationships 
in dynamic space in the future. For data processing methods, 
the internal response of data preprocessing to material proper-
ties and their intersection should also be considered with more 
influencing factors.

3.3. Developing Professional Algorithms for Materials Science

In order to fully solve the challenges that machine learning algo-
rithms are not universal to materials science, many researchers 
draw lessons from the successful cases or empirical analysis in 
similar fields and choose the appropriate algorithm model to 
efficiently optimize the material object. As shown in Figure 4, 
the currently popular machine learning algorithms are sum-
marized, which could be divided into four major directions: 
classical learning,[116] reinforcement learning,[117–119] ensemble 
learning,[120,121] neural network and deep learning.[122]

These four kinds of machine learning algorithms have 
been widely concerned by researchers in materials science. As 
shown in Table 1, ten classical algorithms are applied for mate-
rials information mining with huge application potential in 
machine learning.[116] Among them, the decision tree and SVM 
model are the main classification algorithms. The advantage of 
decision tree model is that no domain knowledge or parameter 
setting is needed in the construction process, so that the deci-
sion tree is more suitable for knowledge discovery in mate-
rial research. While the SVM could avoid over-fitting to some 
extent, since does it only depends on support vectors. Thus, 
SVM is still effective in medium to small samples. Riley et al. 
reported a Molecule Deep Q-Networks model for molecular 
optimization by combining chemical knowledge and reinforce-
ment learning,[123] which exhibit advantages including higher 
sampling efficiency and better molecules exploitation. Sparks 
et al. simulate the experimental data effectively by an ensemble 
learning method by merging different data sources into the 
modeling of sparsely represented experimental data. In the case 
of bandgap prediction, the root mean square error could be 
reduced by over 9%.[57] Yu et al. reported a decision tree-based 
ensemble learning model to accurately predict the material 
removal rate for chemical mechanical planarization.[124]

Apart from the three categories mentioned above, the neural 
network and deep learning are currently the focus of most 
attention. In 2006, Hinton et  al. alleviated the local optimal 
solution problem by using a pre-training method, which pushed 
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the hidden layer to 7 layers.[149] After that, the neural network 
become the real depth learning, such as the subsequent Deep 
Belief Nets,[150] Convolutional Neural Network,[151–153] and 
Recurrent neural network.[154–156]

The rapid development of deep learning has also solved 
many thorny problems in materials science. For example, Rao 
and Liu reported a three-dimensional depth convolution neural 
network to predict the anisotropic effective material proper-
ties for representative volume elements (RVEs) with random 
inclusions.[157] A radial basis function artificial neural network 
model is developed by Ince et al. to predict the propagation and 
growth behavior of fatigue crack.[158] In ref. [48], Agrawal et al.  

established a highly accurate materials property prediction 
model by leveraging the large DFT-computational data sets, 
smaller DFT-computed data sets, and available experimental 
observations. Besides, the neural networks and deep learning 
methods have also demonstrated their strong ability in many 
other material research.

Although the diversity of machine learning algorithms could 
provide much selectivity, the algorithms applicable to materials 
science are still limited since it is obviously different from the 
time series and context in the text. Moreover, it also contains 
many indeterminate factors, such as ion valence and condi-
tional chemical reaction, which need more hyperparameters 

Figure 4.  The classification for machine learning algorithms.
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to be set for algorithm model. At present, most materials 
researchers rely on the existing algorithms, traditional machine 
learning models, and simple neural networks. In the future, 
more suitable algorithm models should be developed in actual 
learning process for materials science.

3.4. Optimizing and Evaluating the Learning Models

The most straightforward interpretability for machine learning 
is using the interpretable models, such as logical regression, 
linear model, and decision tree.[159] Ribeiro et  al. reported the 
LIME explanation technique to explain the predictions of any 
classifier in an interpretable and faithful manner by learning 
an interpretable model.[160] Besides, by transforming the task 
framework into the sub-module optimization, it could help to 
decide if one should trust a prediction, choose between dif-
ferent models, improve an untrustworthy classifier, and iden-
tify why a classifier should not be trusted. Murdoch et al. tried 
to address these concerns by defining interpretability in the 
context of machine learning, and the Predictive, Descriptive, 
Relevant framework are also introduced for interpretations.[161] 
Yuma Iwasaki and co-workers predicted the spin-driven ther-
moelectric materials with anomalous Nernst effect by an inter-
pretable machine learning method called factorized asymptotic 
Bayesian inference hierarchical mixture of experts (FAB/
HMEs), according to the prior knowledge of material science 
and physics. After practical material synthesis, a new type of 
spin-driven thermoelectric material is finally demonstrated.[162] 
Moreover, Kailkhura et  al. proposed a new evaluation metric 
and a trust score to better quantify the confidence in the pre-
dictions, associating with a rationale generator component to 
provide both model-level and decision-level explanations. As a 
result, the properties of crystalline compounds and potentially 
stable solar cell materials could be primely predicted.[163] And 
other studies on interpretable machine learning[164–166] can also 
provide reference to machine learning for principal research 
in materials. However, the research of machine learning in 
materials science is still insufficient, and the interpretability is 

also a problem, which may lead to the omission of the internal 
influence factors of deep learning on materials research in the 
future.

3.5. Developing Open-Source Material Packages and Machine 
Learning Frameworks

To promote the application of machine learning in materials 
science, many open-source machine learning tools have been 
provided. For example, SchNet is a deep learning framework 
for molecular materials, which is specifically designed to 
model atomic systems by using continuous filter convolution 
layers.[167] DScribe is a software package for machine learning 
that could provide widespread feature transformation for 
atomic material simulations.[168] Matminer is an open-source 
software based on Python, which can analyze and predict 
material properties by the data-driven method.[169] Pymatgen 
is a robust open-source Python Materials Genomics library for 
material analysis,[170] which could the initial setup and original 
calculated data for high-throughput computing materials sci-
ence. COMBO designs an effective Bayesian optimization 
scheme, which is also an as an open-source python library by 
combining Thompson sampling, random feature graph, first-
order Cholesky update and automatic hyperparameter adjust-
ment.[171] COMBO is available on the website (https://github.
com/tsudalab/combo). AFLOW-ML provides an open REST-
fulAPI with direct access to continuously updated algorithms, 
which can be transparently integrated into any workflow, such 
as electronic retrieval and thermal or mechanical performances 
prediction.[172] In addition to the open-source packages men-
tioned above, the open-source framework including Tensor-
Flow,[173] Pytorch,[174] Keras,[175] Scikit-Learn[176] can also reduce 
the time of building models from the beginning and improve 
work efficiency.[177] For example, the python library-based Scikit-
Learn is used to predict thermal stability of perovskite materials 
by machine learning, feature selection, and model evaluation.[44] 
We believe that these types can further accelerate the adoption 
of machine learning methods in material development, if the 

Table 1.  Ten common algorithms of machine learning for application in materials science.

Algorithm type Algorithm Model Examples in Materials Science

Classification algorithm C4.5[125] Analysis of the causes of Coffee defects by decision Tree[126]

Naive Bayes[127] Classification of metal binders[128]

SVM[129] Material monitoring and defect diagnosis[130]

Prediction of rock brittleness[131]

KNN[132] Prediction of process parameters of reinforced metal casting[133]

Analysis of welding modeling of different materials[134]

Adaboost[135] Temperature compensation of Silicon Piezoresistive pressure Sensor[136]

Cart[137] Differential diagnosis of mucosanase[138]

Clustering algorithm K-Means[139] Structural texture similarity recognition of materials[140]

Establishment of parametric homogenized crystal plasticity model of single crystal Ni-base superalloy[141]

EM[142] Estimation of dose distribution from positron emitter distribution combined with filtering[143]

Correlation distribution Apriori[144] Identify the frequency trajectory of material transportation[145]

Connection analysis PageRank[146] Measurement of hyperelastic materials[147]

Remote protein homology detection[148]

Adv. Funct. Mater. 2022, 32, 2108044
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open-source material packages and machine learning frame-
works could be effectively connected by the cloud-based inter-
connected applications. At present, in the research of machine 
learning in materials science, the materials-related open-source 
toolkits and programming language frameworks have been 
well designed by programming tools, which can provide great 
convenience for non-professional programming researchers, 
such as materials researchers. However, more development in 
open-source toolkits are still needed in all directions of mate-
rials science to promote the further popularization of feature 
engineering and machine learning.

4. Summary and Perspectives

After the above discussion, we fully believe that machine 
learning exhibits huge ability to mine new materials in the 
data driven era. Based on the challenges of machine learning 
in materials, the current solutions and research progress have 
been summarized and discussed. Although these pioneering 
studies have been conducted to promote the machine learning 
in materials science, novel algorithm model technologies, effi-
cient data preprocessing methods, information mining, mate-
rial structure and performance prediction, and new function 
prediction, as well as the interaction among these features, 
should be further prospected to improve work efficiency and 

scientific research progress in materials science. Thus, it is 
believed that notable advances still need to be developed to 
meet the requirements of practical applications. Herein, as 
shown in Figure  5, we outline several possible directions for 
machine learning and hope that these perspectives might be 
useful for researchers in materials science.

4.1. Machine Learning with Small Sample Size

In the process of material research, it will be a huge step if 
the studies could be impelled by a small amount of data. For 
example, the DNN regression has been used to predict defects 
and solidification cracking susceptibility of stainless steels based 
on 487 data points.[91] In future study, DNN could also be trained 
and tuned to convert the scattered small dataset into high-pre-
cision maps in high-dimensional chemical, processing para-
meter, and performances space. In addition, in order to learn 
from the supervised information of limited samples, zero shot 
learning (ZSL),[178] one shot learning (OSL),[179] and few shot 
learning (FSL)[180] would be mostly potential research objects 
for small sample learning because of the learning based on a 
small sample size. The typical example in character generation 
indicates that a computer program is required to break the char-
acters into smaller parts, which can be transferred among each 
character, and then aggregate these smaller components into 

Figure 5.  The perspective of machine learning in materials science.
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new characters.[181] We think this effective strategy could also 
be similar for potential application in material detection, defect 
prediction, classification and so on. Accordingly, the major prob-
lems of machine learning in materials science will be solved, 
such as learning like human beings, learning rare situations, 
reducing the sample collection and computational costs.

4.2. Constructing New Features by Combining Multiple Features

Resembling the deep learning of graphics and audio synchro-
nous recognition in the time dimension, the multi-feature 
combination effects among phase, structure, performance, and 
application based on time and space dimensions should also 
be developed during the whole life cycle of material prediction, 
material synthesis, material service, recycling, and reusing.[182] 
If the number of size parameters is too large, the common 
matrix decomposition can be used as fair idea for reference. 
The combination of multi-features can not only expand the 
amount of sample data, but also improve the fitting ability of 
the complex relationship of experimental features. Here are 
our recommendations for multi-features combination. Firstly, 
the initial features should be linearly combined to form new 
features, and the influence of combined features on the whole 
research process should be explored. In addition, the initial fea-
tures could also be disassembled into new features, and then 
add them into other features to form new features.

4.3. Controlling Data to Ensure Feature Balance

Due to the inevitable data bias of the material experiment and 
the neglect of the collection method, the problem of data imbal-
ance always occurs in the process of data collection which would 
further lead to the situation of judgment confusion. Herein, we 
try to provide some suggestions to solve the unbalanced data. 
The first one is data sampling, which could be divided into up-
sampling and down-sampling. Up-sampling is the process of 
duplicating a small amount of data to equalize the proportion 
of each category, in which adding random disturbance into the 
newly generated data is necessary to overcome the overfitting. 
While the down-sampling is to select a small part from most cat-
egories to keep the data proportion of each category at a normal 
level, in which multiple random samples are required to ensure 
the integrity of information. The second one is data combina-
tion, which could generate more samples by using the similar 
features of existing samples. The third one is weighting, which 
refers to applying different weights to each samples according to 
the corresponding errors, so that machine learning could focus 
more on fewer and error-prone samples. And finally, one clas-
sification, such as One-class SVM,[183] is also a very key strategy 
for controlling data to ensure feature balance, when the propor-
tion of positive and negative samples is out of balance.

4.4. Discovering the Relevance and Similarity between Features

In materials science, many factors could affect the features of 
labeled training samples, such as different preparation methods, 

preparation parameters, etc. The limited correlation between 
different samples and the lack of unified standard contribute 
to a poor comparability. Thus, the exploration on the relevance 
and similarity between features is still very important in mate-
rials science. We can try to establish the relationship between 
nodes and edges by using graph neural network to explore the 
relationship between the child nodes and some others.[184] The 
materials can be divided into different categories, and each cat-
egory has many different research directions, which could have 
many similarities such as time, space, structure, and perfor-
mance. Furthermore, the transfer learning to transfer knowl-
edge from the source domain rich in training data to the target 
domain lacking in training data or clustering in graph embed-
ding might also be effective for seeking similarity.

4.5. Presetting Experimental Variable Parameters

There are always many uncertain parameters in material 
research, such as temperature, humidity, time and so on, which 
would affect the phase composition and morphology of the final 
materials. Traditional machine learning also has limitations in 
dealing with the related features. Therefore, it is necessary to 
provide pre-parameters for these variable parameters, so that a 
conditional database should be established to meet the require-
ments. In addition, we believe that we can consider strength-
ening the generative adversarial network,[185] transformer[186] or 
other ideas in the process of deep learning, which can be used 
as references to deal with the variable parameter.

4.6. Developing Novel Learning Models

Based on the material prediction according to the theoretical 
calculation, several new laws would be found by machine 
learning. And novel models, algorithms or integrated algo-
rithms for material computing could be developed based on the 
paradigm named “theory-oriented, data-driven, and parameter 
learning optimization”, which could help to mine unknown 
new theories, develop new mechanisms, and in turn promote 
the progress of machine learning in materials science. For 
example, it is suggested to develop novel learning models based 
on the material genome initiative via machine learning, to 
verify them in combination with the experimental results, and 
finally to optimize the genome initiative for materials science.

In conclusion, we believe that machine learning is emerging 
as a great strategy for materials science, which would speed up 
the process of material exploration. The day, when machine 
learning is maturely applied to materials science and tech-
nology, would be the time for opening a new chapter of human 
civilization. Therefore, summarizing all possible strategies and 
providing in-depth perspectives will be necessary to make the 
machine learning viable in the future.
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